Short-Term Wind Speed Forecasting Using Support Vector Regression Optimized by Cuckoo Optimization Algorithm

نویسندگان

  • Qingping Zhou
  • Haiyan Jiang
  • Ru Hou
  • Fang Zong
چکیده

This paper develops an effectively intelligent model to forecast short-term wind speed series. A hybrid forecasting technique is proposed based on recurrence plot (RP) and optimized support vector regression (SVR). Wind caused by the interaction of meteorological systems makes itself extremely unsteady and difficult to forecast. To understand the wind system, the wind speed series is analyzed using RP. Then, the SVR model is employed to forecast wind speed, in which the input variables are selected by RP, and two crucial parameters, including the penalties factor and gamma of the kernel function RBF, are optimized by various optimization algorithms. Those optimized algorithms are genetic algorithm (GA), particle swarm optimization algorithm (PSO), and cuckoo optimization algorithm (COA). Finally, the optimized SVR models, including COA-SVR, PSO-SVR, and GA-SVR, are evaluated based on some criteria and a hypothesis test. The experimental results show that (1) analysis of RP reveals that wind speed has short-term predictability on a short-term time scale, (2) the performance of the COA-SVR model is superior to that of the PSO-SVR and GA-SVR methods, especially for the jumping samplings, and (3) the COA-SVR method is statistically robust in multi-step-ahead prediction and can be applied to practical wind farm applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search

Due to the electricity market deregulation and integration of renewable resources, electrical load forecasting is becoming increasingly important for the Chinese government in recent years. The electric load cannot be exactly predicted only by a single model, because the short-term electric load is disturbed by several external factors, leading to the characteristics of volatility and instabili...

متن کامل

Short-term Load Forecasting of Smart Grid Systems by Combination of General Regression Neural Network and Least Squares-Support Vector Machine Algorithm Optimized by Harmony Search Algorithm Method

This paper presents an optimization algorithm to solve the short-term load forecasting problem more quickly and accurately in progress of smart grid development. The new approach employs generalized regression neural network (GRNN) to select influence factors of short-term load, and then a least squares-support vector machine (LS-SVM) based on harmony search algorithm (HS) optimization algorith...

متن کامل

Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach

Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed....

متن کامل

Short-term Wind Speed Forecasting by Using Model Structure Selection and Manifold Algorithm

Nonlinear model structure selection (MSS) is an important step in the modeling theory of the nonlinear system. The proper model structure and model parameters estimation can be used to reduce unnecessary computations and improve the model forecast accuracy. This paper mainly investigates the short-term wind speed forecasting (STWSF) by utilizing the comprehensive MSS technique based on real dat...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014